Route-Constrained
Family Shopping
Optimization

Christian Baer, Erich Brandt, Elizabeth
Strzelczyk, Colin Thurston, Colin Willenborg,
Tavion Yrjo

Team: sdmay21-34

Project Overview

e Provide multiple heterogeneous groups with an application to
optimize shopping routes

e FEachgroup cancreate lists and update them (i.e., add items)

e Anindividual can participate in multiple groups

e Committing to a subset of items to be purchased is propagated to
other participants.

e Application creates a route based on locations of users and the
stores
e Have constraints the group can put on the route
o Distance, Time
e Have multiple members start at different locations

e Both Android and Web application
o Kotlin and React respectively

\ Skills Learned

ReactJS

Web Scraping
ASPNET
Python

Kotlin
Communication
Teamwork

Requirements

Constraints
e Radius of the map of stores and locations
e Thetime it takes to travel to different stores
Starting the trip from home vs. varying locations
e Starttime of the trip
Functional Requirements
e Storelocation accuracy
e Outputting the closest store with desired items with respect to distance/time to
travel
e Output fastest travel time to any given store at desired start time
Nonfunctional Requirements
e Routes must generate inreal time
e SQL Datamust beinreal time
e Application must be intuitive and easy to read

Design Decisions - Overview

Login

o Ul
o React
m Web Application
o Kotlin
m Android
e Database
o MySQL
o Connection through ASP.net
e Algorithms

o Web Scraper on the server

o Route generation on both application
e Project Constraints

o Distance

o Time

System Architecture

e Four Main Modules
o Backend
o User Interface
o Map API
o Web Scraper

e ASPNET API retrieves and changes
information from the MYSQL DB

e Both Mobile and Web Applications use
APl as a middleman to our DB

e Python Web Scraper deposits item
information from web to DB

e Storedatais sent to Mapbox via User
Interface and map data is returned

Web Scraper Backend

Data Base

Python <« ASP.NET SED

MySQL

tWeb API Calls

EDEA User Interface

Mapbox <= REACT >

Kotlin

Components

Mapbox APl to create Map in application

User Interface is only for user interaction

MYSQL DB to store any data that needs to be saved.
Web API used to communicate with DB

Web scraper to populate store inventory

Changes from Ul design to implementation

Before After

913 & @ v4i0

< Shopping List

1219 & @ vin

Shopping lists
= Family

Birthday Party

Family Shopping Lists

Create Shopping List ADD ITEM ADD FAMILY MEMBER

Birthday Party
Chess Club Peanut Butter

Christmas Party Silly String

Butter

Start Shopping Trip

Add Family Member

CREATE NEW LIST

Other design changes

e Removed constraints
o Price
e Switched the search engine
o Google ->Bing
e Changed Shortest Path Algorithm
o A*Algorithm -> Dijkstra’s Algorithm
e Changed the focus of the project from Family to Group
o Users can abandon and join other groups

e Live updating of shopping lists

Standards

e |EEE/ISO/IEC 14764-2006 Software Life Cycle Maintenance Standards

o Ensure that updates are beneficial to project
o Updates do not break other functionality in the project.

e |EEE 1008-1987 Software Testing Standards
o Unit testing
o Functional testing
o Backbone for ensuring functionality

Timeline of Completion

e February8th e March 29th

o Completed storyline for user in the application

o Completed preliminary Ul design o Web application is able to show items from database

e February 22nd o User group creation and deletion implementation
o Created preliminary mobile app and web app w/ basic o Web scraper complete
functionality e April 11th

o Basic web scraper functionality o el e
o Completed initial WebAPI B8 .

e March 1st o Added propagation of list updates to groups

o Improved functionality of web app and mobile app o Mapbox implementation complete on both mobile

o Started implementation of path finding algorithms and web
e March 15th o Mobile and web app now get all necessary
o Connected web and mobile app to the backend information from API

o Improved database structure
o Initial Mapbox implementation

Testing

import unittest

o Un|t import WebScraping
. . class TestWebScraper(unittest.TestCase):
o Displaying aroute def test_NonNull(self):
o Updatlnga DB E.a;{.asser‘tIsNotNoneiﬂ WebScraping.productJson, "Should return the obj"@
o Ul testing of Mobile and Web def test_Aroundi@(self):

self.assertGreaterEqual(len(WebScraping.productlson),10, "Should have 1@ results")

e Interface
o Web scraping for items’ locations and DB
o Displaying items and routes from algorithms on the frontend
o Database able to accept and send data to frontend

e Acceptance
o Verify use cases were met
o Advisor signed off on demo
o Review requirements/functionality of project

http://www.youtube.com/watch?v=1d7RtVjYPx8

9:00 & &

Family Shopping

Final Outcome

We have completed our design and implemented all steps of functionality for our project.
Web Application
o React and hosted on cyshopper.gear.host
Android application
Web API
o Bridge between frontend and backend
Database
Web Scraper
o Onserver called by frontend
Route Generator
o Onserver called by frontend

Click to remove
purchased items frof

list

Future Extensions

e Have amore in depth security and privacy
o Our project assumes that security is done on a basic level
e Have notifications for sales on items
o Promotes getting certain items
e Extend options to certain stores to better the item database
o Betteridea for availability, price, and location
e Storescan promote sales on the applications
o Incentive for stores to participate in apps

Questions?

