
Route-Constrained
Family Shopping
Optimization

Christian Baer, Erich Brandt, Elizabeth
Strzelczyk, Colin Thurston, Colin Willenborg,
Tavion Yrjo
Team: sdmay21-34

Project Overview

● Provide multiple heterogeneous groups with an application to
optimize shopping routes

● Each group can create lists and update them (i.e., add items)
● An individual can participate in multiple groups
● Committing to a subset of items to be purchased is propagated to

other participants.

● Application creates a route based on locations of users and the
stores

● Have constraints the group can put on the route
○ Distance, Time

● Have multiple members start at different locations

● Both Android and Web application
○ Kotlin and React respectively

Skills Learned

● ReactJS
● Web Scraping
● ASP.NET
● Python
● Kotlin
● Communication
● Teamwork

Requirements

Constraints

● Radius of the map of stores and locations

● The time it takes to travel to different stores

● Starting the trip from home vs. varying locations

● Start time of the trip

Functional Requirements

● Store location accuracy

● Outputting the closest store with desired items with respect to distance/time to

travel

● Output fastest travel time to any given store at desired start time

Nonfunctional Requirements

● Routes must generate in real time

● SQL Data must be in real time

● Application must be intuitive and easy to read

Design Decisions - Overview

● UI
○ React

■ Web Application
○ Kotlin

■ Android
● Database

○ MySQL
○ Connection through ASP.net

● Algorithms
○ Web Scraper on the server
○ Route generation on both application

● Project Constraints
○ Distance
○ Time

System Architecture

● Four Main Modules
○ Backend
○ User Interface
○ Map API
○ Web Scraper

● ASP.NET API retrieves and changes
information from the MYSQL DB

● Both Mobile and Web Applications use
API as a middleman to our DB

● Python Web Scraper deposits item
information from web to DB

● Store data is sent to Mapbox via User
Interface and map data is returned

Components

● Mapbox API to create Map in application

● User Interface is only for user interaction

● MYSQL DB to store any data that needs to be saved.

● Web API used to communicate with DB

● Web scraper to populate store inventory

Changes from UI design to implementation

 Before After

Other design changes

● Removed constraints
○ Price

● Switched the search engine
○ Google -> Bing

● Changed Shortest Path Algorithm
○ A* Algorithm -> Dijkstra’s Algorithm

● Changed the focus of the project from Family to Group
○ Users can abandon and join other groups

● Live updating of shopping lists

Standards

● IEEE/ISO/IEC 14764-2006 Software Life Cycle Maintenance Standards
○ Ensure that updates are beneficial to project
○ Updates do not break other functionality in the project.

● IEEE 1008-1987 Software Testing Standards
○ Unit testing
○ Functional testing
○ Backbone for ensuring functionality

Timeline of Completion

● February 8th
○ Completed storyline for user in the application
○ Completed preliminary UI design

● February 22nd
○ Created preliminary mobile app and web app w/ basic

functionality
○ Basic web scraper functionality
○ Completed initial WebAPI

● March 1st
○ Improved functionality of web app and mobile app
○ Started implementation of path finding algorithms

● March 15th
○ Connected web and mobile app to the backend
○ Improved database structure
○ Initial Mapbox implementation

● March 29th
○ Web application is able to show items from database

○ User group creation and deletion implementation

○ Web scraper complete

● April 11th
○ Routing algorithm complete

○ Added propagation of list updates to groups

○ Mapbox implementation complete on both mobile

and web

○ Mobile and web app now get all necessary

information from API

Testing

● Unit
○ Displaying a route

○ Updating a DB

○ UI testing of Mobile and Web

● Interface
○ Web scraping for items’ locations and DB

○ Displaying items and routes from algorithms on the frontend

○ Database able to accept and send data to frontend

● Acceptance
○ Verify use cases were met

○ Advisor signed off on demo

○ Review requirements/functionality of project

Demo

http://www.youtube.com/watch?v=1d7RtVjYPx8

Final Outcome

● We have completed our design and implemented all steps of functionality for our project.

● Web Application

○ React and hosted on cyshopper.gear.host

● Android application

● Web API

○ Bridge between frontend and backend

● Database

● Web Scraper

○ On server called by frontend

● Route Generator

○ On server called by frontend

Future Extensions

● Have a more in depth security and privacy
○ Our project assumes that security is done on a basic level

● Have notifications for sales on items
○ Promotes getting certain items

● Extend options to certain stores to better the item database
○ Better idea for availability, price, and location

● Stores can promote sales on the applications
○ Incentive for stores to participate in apps

Questions?

